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Abstract. On-line learning of a rule given by anN -dimensional Ising perceptron is considered
for the case when the student is constrained to take values in a discrete state space of size
LN . For L = 2 no on-line algorithm can achieve a finite overlap with the teacher in the
thermodynamic limit. However, ifL is on the order of

√
N , Hebbian learning does achieve a

finite overlap.

Artificial neural networks are usually trained by a set of examples [1]. After the training
phase such a network (‘student’) has achieved some knowledge about the rule (‘teacher’)
which has generated the examples. The difference between the outputs of the student and
the teacher for a random input vector defines the generalization error.

There are two basic kinds of training algorithms: (1) in the batch mode the complete
set of examples is stored and iteratively used to change the synaptic weights of the student
network; (2) in the on-line mode each example is used only once, at each training step a new
example is presented and the synaptic weights are changed according to some algorithm.

The analysis of on-line algorithms using methods of statistical mechanics [2–6] has
shown that this is a powerful and versatile approach to learning problems. To our knowledge,
however, only continuous couplings have so far been considered. However, for hardware
implementations it would be extremely useful to design algorithms which work in a discrete
space of synaptic weights. It is not known whether on-line algorithms work at all for weights
which have a limited numberL of possible values. Here we show for a simple case that
generalization is only possible ifL is of the order of

√
N , whereN is the size of the network.

Hence for a fixed depthL of the synaptic weights, on-line learning will not generalize at
all in the thermodynamic limit. This is in contrast to batch learning, where forL = 2 a
transition to perfect generalization is found at a critical size of the training set [7, 8].

We consider the perhaps simplest learning scenario in which the teacher is a perceptron
with N binary couplingsBi ∈ {−1, 1}. In on-line learning, the student perceptron
with weight vector J receives at each time step anN -dimensional inputξ and the
classification bitσB(ξ) ∈ {−1, 1} provided by the teacherB. The task is to find a mapping,
J ′ = f (J, ξ, σB(ξ)) which updates the studentJ , our current approximation ofB, based on
this information. Of course,J ′ should be an improved approximation. Under very general
conditions, we show in this letter that no such mapping exists ifJ andJ ′ are confined to
lie, as the teacher is, in the set{−1, 1}N . In a second step, we consider Hebbian learning
in a discretized state space of sizeLN , and determine the generalization behaviour as a
function ofλ = L/√N .

The classification ofξ is given by σB(ξ) = sign(BT ξ). Hence the quality of the
approximation provided by a studentJ can be defined via the overlapR = N−1BT J with
the teacher. Since the students have binary components, it is convenient to have the update
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rule f specify at which sites the sign should be flipped to obtain the updated weight vector
J ′. So J ′i = Jifi(J, ξ, σB(ξ)) and thefi take values in{−1, 1}. The update rule will be
useful if it improves on our current state, that is if

BT J ′ =
N∑
i=1

BiJifi(J, ξ, σB(ξ)) > BT J. (1)

Of course, f cannot have any built-in knowledge about the teacher but must infer
information aboutB from the current pattern. Formally, this can be enforced by requiring
that f be useful not just for the single teacherB but, on average, for teachers which have
the same overlap asB with J . Denoting by〈. . .〉B|BT J=NR the average over the uniform
distribution on the set of teachers which have overlapR with J , a usefulf must thus fulfill〈 N∑

i=1

BiJifi(J, ξ, σB(ξ))

〉
B|BT J=NR

> NR. (2)

By a gauge transformation, the left-hand side may be written as〈 N∑
i=1

Bifi(J, ξ, σB(ξ
∗))
〉
B|∑i Bi=NR

where ξ ∗ is given by ξ ∗i = Jiξi . Using the fact that for the Heaviside step functionθ ,
1= θ(σB(ξ ∗))+ θ(−σB(ξ ∗)), we may rewrite (2) as∑

σ∈{−1,1}

N∑
i=1

fi(J, ξ, σ )〈Biθ(σBT ξ ∗)〉B|∑i Bi=NR > NR. (3)

Under mild conditions onξ , one finds that

〈Biθ(σBT ξ ∗)〉B|∑i Bi=NR > 0 (4)

for any positiveR in the limit of largeN . Consequently, the left-hand side of (3) is
maximized by choosingfi(J, ξ, σ ) = 1, and the best we can do is to keep the weight
vectorJ fixed.

There are some special cases where (4) is not true. If just a single component ofξ is
non-zero, thenσB(ξ) will of course give us the corresponding component ofB and one can
achieveR = 1 by askingN such questions. However, it is hard so see how such a strategy
might be extended to the case of a noisy teacher.

For more generic patterns, however, theξi will be of similar magnitude. Furthermore,
ξ will only have a small overlap withJ , that ism =∑i ξiJi/|ξ | will be of order 1. Then
for largeN , and consequently smallξi/|ξ |, the left-hand side of (4) may be evaluated using
the central limit theorem and yields

〈Biθ(σBT ξ ∗)〉B|∑i Bi=NR = RH
(
−σm R√

1− R2
−
√

1− R2

R

σξiJi

|ξ |

)
(5)

which is positive. So if the components ofξ are picked independently from distributions
having bounded ratios of their variances, the fraction of inputs for which (4) is violated
decreases exponentially withN .

An even stronger statement can be made for binary inputs,ξi ∈ {−1, 1}. Then the large
N expansion yielding (5) can only be wrong, if the input is correlated with the student
(|m| � 1). However, for this case (4) may be verified by evaluating its left-hand side with
the saddle-point method. Consequently, for binary inputs, on-line learning is impossible
even if queries [5] are allowed.
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As it is possible to learn on-line with continuous couplings, the question arises what
the numerical depth of the couplings must be for on-line learning to succeed. We thus
consider a situation where theJi are constrained to lie in the set{1, 2, . . . , L}, still with
a binary teacher. A weight vectorJ is then taken to represent an estimateB̃ of B via
B̃i = sign(Ji −L/2). For randomly chosen binary inputs, Hebbian learning may be applied
to J by truncating to the allowed range of values:

J ′i =
{
Ji + ξiσB(ξ) if Ji + ξiσB(ξ) ∈ {1, . . . , L}
Ji else.

(6)

The incrementsξiσB(ξ) are not independent over the sitesi but their covariances do decay
as 1/N . So for largeN the sites will approximately decouple, and we are left with a biased
random walk on each site. The bias is given by

〈ξiσB(ξ)〉 = Bi
√

2

πN
(7)

where〈. . .〉 is an average over random vectorsξ .
Let pl(t) denote the probability thatJ1 = l after t iterations of (6) and assume that

B1 = 1. Then

p1(t + 1) = rp1(t)+ rp2(t)

pl(t + 1) = gpl−1(t)+ rpl+1(t) l = 2, . . . , L− 1

pL(t + 1) = gpL−1(t)+ gpL(t) (8)

wherer + g = 1 andg = 1/2+ 1/
√

2πN for largeN . The stationary solutionps of (8) is
ps
l ∝ (g/r)l . Thus for largeN the asymptotic overlapRs between the estimatẽB and the

teacher will approach zero ifL is fixed. ForL = λ√N , however, one finds

Rs = 1− 2

1+ e
√

8/πλ
. (9)

The time needed to approach the stationary distribution will scale linearly withN for
fixed λ. So letR(α) be the overlap afterαN steps, assuming that initiallyJi = L/2. The
time evolution ofR may then be calculated using the explicit formulae for the powers of
the transition matrix of the random walk (8) given in [9]. One finds

R(α) = Rs− 4
√

2/πe−α/π
∞∑
k=0

e−(π
2α/2λ2)(2k+1)2 λ

(2/π)λ2+ π2(2k + 1)2
. (10)

The resulting dependence of the overlap onλ (for fixed α) is non-monotonic as shown in
figure 1. For largeα the sum in the above expression is dominated by the first term and
the difference betweenR and its asymptotic valueRs decays exponentially. The relaxation
time is given by

τ = 2λ2π

2λ2+ π3
(11)

and increases withλ. Thus for small values ofλ the overlap will increase from zero
up to Rs quickly but, on the other hand, this asymptotic value will not be close to unity
because of (9). This competition leads to the non-monotonic behaviour found in figure 1.
The relaxation timeτ stays finite for largeλ, and thus in the limit of a large number of
examples the optimal choice isλ→∞.

To find the behaviour forL� √N , we need to take the limitλ→∞ in (10), that is,
replace the sum overk by an integral. This yields

R(α) = 1− 2H(
√

2α/π) (12)
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Figure 1. OverlapR achieved by Hebbian learning usingL different weight values per coupling,
L = λ√N . The curves are, from top to bottom, forα = 10, α = 1 andα = 0.1

the result found in [10] for the case where one applies Hebb’s rule to continuous couplings
and clips in the end.

For L > 2, here we have considered only simple Hebbian learning. However, since
αN examples will be needed to achieve good generalization, we believe that one cannot
improve on the scaling,L = λ√N , by using a different algorithm.

One of the authors (WK) would like to thank Ido Kanter for useful discussions. The work
of RU was supported by the Deutsche Forschungsgemeinschaft (DFG).
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